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Abstract

In the presence of K,COs, reaction of methyl propynoate 2 with ( a-furoyl) methyltriphenylphosphonium bromide 1a or (a-thienacyl)-
methyltriphenylphosphonium bromide 1b gave methyl 4-( a-furoyl)-2- (triphenylphosphoranylidene )but-3-enoate 4a or methyl 4-( a-thien-
acyl)-2-(triphenylphosphoranylidene)but-3-enoate 4b as the major product. Phosphorane 4a or 4b could react further with methyl
perfluoroalkynoates Sa-b to afford dimethyl 2-( a-furoyl-1-perfluoroalkylvinyl)-4- (triphenylphosphoranylidene ) pent-2-enedioates 7a=b
or dimethyl 2-(ca-thienacyl-1-perfluoroalkylvinyl)-4-(triphenylphosphoranylidene)pent-2-enedioates 7c-d, respectively. Dimethyl
4-(a-furyl)-6-perfluoroalkylisophthalates 8a~b or dimethy! 4-( a-thienyl)-6-perfluoroalkylisophthalates 8c—d were prepared in high yields
via intramolecular Wittig reaction of phosphoranes 7a—d under heating in a sealed tube in xylenes. The structures of these compounds were
confirmed by IR spectroscopy, mass spectrometry, 'H, '°F and '*C NMR spectra, and elemental analyses. Reaction mechanisms of the
formation of compounds 4, 6, 7 and 8 were also proposed. © Elsevier Science S.A.
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1. Introduction

Polysubstituted arenes have been synthesized traditionally
through substitution of aromatic ring compounds. However,
this method suffered from long synthetic routes and the pres-
ence of complicated positional isomers. The fluorinated ana-
logues are more attractive as a result of their lipophilicity and
the increment of activity [1,2]. Therefore, to study the con-
venient and efficient syntheses of polysubstituted arenes is
valuable in organic synthetic methodology. Recently, we had
designed a simple approach to the synthesis of fluorinated
polysubstituted arenes through a nucleophilic addition of a
phosphorane to an electrodeficient alkyne to produce a new
phosphoric ylide which possesses a conjugated six-carbon
main chain with a terminal carbonyl group. Under heating,
this acyclic precursor gives rise to a polysubstituted arene via
an intramolecular elimination of Ph,PO. Several types of tri-
or tetrasubstituted benzoates were synthesized via this
method [3-8]. It is a preferable method owing to its simplic-
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ity and the production of a sole product with definite posi-
tional functional groups.

As a continuation of this study, a simple synthesis of tetra-
substituted benzenes—dimethyl 4-( a-furyl)-6-perfluoro-
alkylisophthalates 8a-b and dimethyl 4-(a-thienyl)-6-
perfluoroalkylisophthalates 8c~d—will be reported in this
paper.

2. Results and discussion

The reaction of ( a-furoyl)methyltriphenylphosphornium
bromide 1a or (a-thienacyl) methyltriphenylphosphornium
bromide 1b with methyl propynoate 2 in the presence of
K,CO; in CH,Cl, at room temperature afforded a mixture of
compounds 3a, 4a or 3b, 4b respectively. Compounds 3 and
4 which could be separated by column chromatography were
the products of 1,3-H migration and four-membered-ring
rearrangement of the betaine A, respectively (Scheme 1).
When the reaction of 1a with 2 was carried out at 40 °C,
compound 4a was the major product, whereas when the reac-
tion of 1b with 2 was carried out at 90 °C, compound 4b was
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the major product (Table 1). Compound 4a or 4b could react
further with methyl perfluoroalkynoates Sa~b in methylene
chloride at room temperature to produce compounds 6a~d as
minor products and 7a—d as major products (Scheme 2).
Compounds 6 and 7 could be separated by column chroma-
tography. The phosphorus ylides 7a—d possessing a conju-
gated six-carbon main chain with a terminal acyl group are
acyclic precursors in the synthesis of aromatic compounds
through an intramolecular Wittig reaction. Phosphoranes 7a~
d were heated in xylenes in a sealed tube at 150 °C for 3 h,
whereupon an intramolecular Wittig reaction took place to
form aromatic ring compounds 8a-d in high yield
(Scheme 3). The structures of 3, 4, 6, 7 and 8 were confirmed

Table 1
Preparation of phosphoranes 3, 4, 6, 7 and isophthalates 8
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by IR, mass spectrometry (Table 1), '"H NMR, '°C NMR,
F NMR (Table 2) and microanalysis. Compound 8 is
formed through elimination of a molecule of Ph;PO from
compound 7; therefore the structure of compound 7 could be
proposed from the structure of the isophthalate 8. The spectral
data for 7 are also in accord with the above proposition. Thus,
the reaction mechanism of the formation of compounds 6 and
7 is suggested to be as follows: first, the C-4 of the phos-
phoranes 4 attacks 8-C of esters 5 to give betaine B, which
then undergoes a 1,3-H migration and a four-membered-ring
rearrangement to form phosphoranes 6 and 7 (Scheme 2).

Product Conditions Yield (%) * M.p. (°C) Molecular formula (mass) ® MS (M*) IR (cm™')
3a 0°C,24h 73 209-210 C,sH,:0,P (454.4) 454 1684, 1641
4a 0°C,24h 19 188-189 Cy3H;0,P (454.4) 454 1672, 1613
3a 15°C,20h 60

4a 15°C,20h 32

3a 40°C, 14 h 31

4a 40°C, 14 h 61

3b 15°C,24h 62 213-214 C,ygH2;05SP (470.5) 471 1683, 1640
4b 15°C,24h 20 209-210 C,gH,;0,SP (470.5) 471 1673, 1635
3b 40°C, 6h 44

4b 40°C, 6h 44

3b 90°C, 3h 30

4b 90°C, 3h 60

6a 25°C,20h 2 160-161 C33H,604F,P (606.4) 606 1742, 1632
7a 25°C,20h 82 156-157 C;3H,606F 5P (606.4) 606 1690, 1640
6b 25°C,30h 40 176-177 C,y5H2606F,P (706.4) 706 1730, 1654
> 25°C,30h 43 128-129 C;35H2606F,P (706.4) 706 1684, 1637
6¢c 25°C,20h 12 169-170 C,3H2605SF,P (622.4) 622 1732, 1684
Tc 25°C,20h 87 176-177 C;3H,605SF;P (622.4) 622 1697, 1648
6d 25°C,30h 53 189-190 C;5H,605SF,P (722.4) 722 1726, 1652
7d 25°C,30h 32 124-125 C;5H2604SF,P (722.4) 722 1682, 1654
8a 150°C, 3h 95 77-18 C,sH,;0sF; (328.2) 328 1739

8b 150°C, 3h 98 43-44 C;H,OsF; (428.2) 428 1740

8c 150°C, 3h 95 60-61 C,sH;;0,SF; (344.3) 344 1736

8d 150°C, 3h 90 62-64 C,;H,,0,SF,; (444 3) 444 1745

* Based on isolated product.

® Satisfactory microanalyses obtained: C + 0.30, H + 0.20.
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'H, '*C and '°F NMR spectral data of phosphoranes 3, 4, 6, 7 and isophthalates 8

23

Product

'H NMR (CDCl;/TMS) & (ppm), J (Hz)

3C NMR (CDCl;/TMS) & (ppm) (C=0)

1F NMR (CDCl;) & (ppm)

3a

4a

3b

4b

6a

3.56 (s, 3H, CO,CH,;),4.41 (d, IH,J=15.2,
H

A3

=CH), 6.48 (dd, 1H, J=3.1, 14,

AL

7.03 (d, 1H,J=3.1," O H),

0
7.54-7.64 (m, 16H, 15H,cn+~ ©

8.41 (dd, tH, J=32.0, 15.2, =CH)

).

).

3.57 (s, 3H, CO,CHs,),
H

A3

648 (dd, 1H,J=34,1.4,7 O ),

i/
707 (d, 1H, J=34," O H),

ba
7.43-7.78 (m, 18H, 15H,on +2X=CH+ Q

3.51 (s, 3H, CO,CH,),4.41 (d, 1H,J=154,

H
]
=CH), 7.04 (dd, 1H, J=44,19," $ ),

ha)
s H

8.18 (dd, 1H, J=30.8, 15.4, =CH)

7.37-7.80 (m, 17H, 15H,0n, + ).

3.45 (s, 3H, CO,CH3), 7.01 (dd, 1H, /=40,

H
1.5, J’-‘s_g ),

7.29-7.64 (m, 19H, 15H,om +2 X=CH +
n
s H)

3.33 (s, 3H, CO,CH,), 3.60 (s, 3H, CO,CHjy),
H
ya
o)

6.14 (dd, 1H, J=34, 1.7, ), 6.43

I
oM,

7.01-7.21 (m, 2H, 2X =CH), 7.51-7.72 (m,
15Hur0m)

6.51 (m, 2H,

169.4 (s, CO,~), 177.7 (d, /=8 -CO-)

168.5 (d, /=108, -CO,-), 1779 (s,
-CO,-)

169.4 (s, CO,-), 182.4 (d, J=7.4,-CO-)

168.6 (d, J=10.1,-CO,~). 1812 (s,
-CO-)

167.0 (d, J=16.1,-CO,-), 164.9 (s,
-C0,-), 180.3 (s, -CO-)

12.08 (s, 3F CF;)

(continued)
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Table 2 (continued)

Product 'HNMR (CDCl,/TMS) & (ppm), J (Hz) *C NMR (CDCl;/TMS) 6 (ppm) (C=0) °F NMR (CDCl;) & (ppm)

Ta 3.27 (s, 3H, CO,CH3), 3.48 (s, 3H, CO,CH,), 167.2 (d, /=123, CO,-), 168.4 (s, 13.12 (s, 3F, CF;)
H —C0,~), 177.8 (s,—-CO-)
A3

6.50 (dd, 1H, J=34,13,7 O ), 6.98

]
7.22 (m, 3H, 2X=CH+ /(}

2

6b 3.44 (s, 3H, CO,CH,), 3.72 (s, 3H, CO,CH;),  167.8 (d, J=15.9,-C0,-), 165.2 (s, —3.54 (t, 3F, CF,) —35.18 (q, 2F, CF,)
H -CO,-), 180.2 (s, ~CO-) —49.24 (dd, 2F, CF,)

A
6.16 (dd, 1H, J=30,12,7 ©
PaN
6.37 (4, 1H, J=3.0,7 0" H),

6.55 (m, 1H, =CH), 7.10-7.35 (m, 2H, =CH

n
o),

7.46-7.80 (m, 15H,o)

H), 7.52-7.67

(m, 16H, 15Hon + )

),

7o 3.40 (s, 3H, CO,CH,), 3.50 (s, 3H, CO,CH,), 168.5 (d, J=15.9, CO,-), 168.3 (s, 3.50 (1, 3F, CF;) 40.05 (q, 3F, CF,) 49.42
H —C0;-), 177.7 (s, CO) (dd, 2F, CF,)

ya!
6.62 (dd, 1H, J=34,1.7,7 O ),
7.30 (s, 1H, =CH), 7.37 (s, 1H, =CH), 7.64—

i/
7.82 (m, 17H, 15H, o + }}

H)
6¢ 3.36 (s, 3H, CO,CH,), 3.62 (s, 3H,CO,CH;),  164.9 (s,—CO,-), 167.2 (d, J=16.1, 11.85 (s, 3F, CFy)

5.29 (s, 1H, =CH), 6.52 (s, 1H, =CH, 6.68— —CO0,-), 185.9 (s, -CO-)

H
4

727 (m, 34,7 §°H),

7.40-7.67 (m, 15H,,)
7c 328 (s, 3H, CO,CH;), 349 (s, 3H,CO,CH;),  166.9 (d,J=13.2, -CO,-), 1684 (s, CO,),  13.11 (s, 3F, CFy)

7.04-7.13 (m, 2H, 2 X =CH), 7.47-7.78 (m, 183.1 (s, CO-)

A,

18H, 15H,om +

6d 3.37 (s, 3H, CO,CH,), 3.65 (s, 3H, CO,CH;), 1669 (d,/=13.2,-CO,-), 168.4 (s, 3.75 (t, 3F, CF,) 40.05 (q, 2F, CF,)
H —C0,), 185.3 (5, -CO-) —49.42 (dd, 2F, CF,)

A3

6.45-7.07 (m, 3H,2X=CH,” § ),7.17-

n

7.67 (m, 17H, 15H, ., + H) (continued)
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Table 2 (continued)

Product 'H NMR (CDCl;/TMS) & (ppm), J (Hz) 3C NMR (CDCl;/TMS) & (ppm) (C=0) !F NMR (CDCl,) 6 (ppm)
7d 3.30 (s, 3H, CO,CH,), 3.50 (s, 3H, CO,CH,), 167.5 (d, J=13.2,-CO,-), 164.9 (s, —3.49 (t, 3F, CF;) —35.44 (q, 2F, CF,)
H —-CO0,-), 197.3 (s, -CO-) —49.35 (dd, 2F, CF,)
4

7.07-729 (m, 3H, 2X=CH,” & ), 7.54-

}1

7.86 (m, 17H, 15H,0n+“ 8

8a 3.91 (s, 3H, CO,CH,), 3.95 (s, 3H, CO,CH,), 165.7 (s, -CO,-), 167.7 (s, -CO,-) 17.01 (s 3F, CF,)
H
yal
6.52 (dd, 1H,J=34,17," ©

AX

6.81 (d, 1H,J=34," O H),

H)

),

4
755 (d, 1H,J=1.7," 0),

8.05 (5, 1Harom), 8.08 (s, 1Hyom)

8b 3.92 (s, 3H, CO,CH;), 3.92 (s, 3H, CO,CH,), —3.70 (¢, 3F, CF;) 29.03 (q, 2F, CF,)
H 46.88 (s, 2F, CF,)

Vs

6.54 (dd, 1H, J=35,18," 0O ),

A

6.80 (d, 1H,J=35," O H),
n
7.57(d, 1H,J=18," 0 ),

7.90 (br. s, 2Hgzrom)

8c 3.60 (s, 3H, CO,CH,), 3.96 (s, 3H, CO,CH,), 166.1 (s, -CO,-), 167.6 (s, -CO,-) 16.47 (s, 3F, CF;)
H

/(I_i
s” H),
}’_ﬁ

745 (d, 1H,7=15,7"8"),

7.68 (8, 1Harorm ), 8.16 (8, 1Hrom)

7.05-7.18 (m, 2H,

8d 3.61 (s, 3H, CO,CH3), 3.94 (s, 3H, CO,CH;) 3.70 (¢, 3F, CF;) 29.13 (q, 2F, CF,) 46.87
H (s, 2F, CF,)

A

7.08-7.20 (m, 2H,” 8 H),

ba
745 (d, 1H,J=16,7 §"),

7.74 (s, 1Hyom), 7.98 (s, 1H,0m)
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CHCO-é 5 3h. 90-98% X
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RF‘—‘ CF; n-Cng CF] n-C3F7
Scheme 3.

3. Experimental

M.p.s and b.p.s are uncorrected. M.p.s were measured with
WRS-1 digital melting point apparatus made by Shanghai
Physical Optical Instrument Factory (SPOIF), China. IR
spectra were recorded on a 7400 spectrometer (Shanghai
Analytical Instrument Factory, China) for samples as KBr
discs or liquid films. NMR spectra were determined with an
AC-100SC spectrometer for solutions in CDCl; with tetra-
methylsilane as internal standard for '"H NMR, and trifluo-
roacetic acid as the external reference for '°F NMR. J values
are given in hertz. Mass spectra were run on a Finnigan-Mat
4510 spectrometer. Petroleum ether refers to the fraction boil-
ing in the range 60-90 °C.

3.1. Methyl 4-(a-furoyl)-2-(triphenylphosphoranylidene)-
but-3-enoate 4a and methyl 4-( a-thienacyl)-2-(triphenyl-
phosphoranylidene)but-3-enoate 4b: general procedure

To a suspension of 1a or 1b [9] (2 mmol) in CH,Cl,
(20 ml) was added methyl propynoate 2 [10] (2.4 mmol)
and K,CO; (3 mmol) and the mixture was stirred at 40 °C
(la+2) or 90 °C (1b+2) for 14 or 3 h respectively. After
filtration of insoluble material, the solvent was removed under
reduced pressure and the residue was separated on a silica gel
G column with EtOAc/petroleum ether (1:2-1:1) as eluent
to give compounds 3a, 4a and compounds 3b, 4b respec-
tively. Further purification was by recrystallization from
EtOAc/petroleum ether.

3.2. Dimethyl 2-( a-furoyl- 1-perfluoroalkylvinyl)-4-
(triphenylphosphoranylidene)-pent-2-enedioates 6a—b
and dimethyl 2-(a-thienacyl-1-perfluoroalkylvinyl)-4-
(triphenylphosphoranylidene)pent-2-enedioates 6¢c—d:
general procedure

To a solution of compound 4a or 4b (1.0 mmol) in anhy-
drous methylene dichloride (15 ml) was added a methyl per-
fluoroalkynoate Sa or 5b [11] (1.5 mmol) and the mixture
was stirred at room temperature for 20 h. The solvent was
removed, and the residue was purified by column chromatog-
raphy on silica gel and elution with EtOAc/petroleum ether
(1:1). Further purification by recrystallization from EtOAc/
petroleum ether gave compounds 6a-d and 7a-d
respectively.

3.3. Dimethyl 4-(a-furyl)-6-perfluoroalkylisophthalates 8a—
b and dimethyl 4-(a-thienyl)-6-perfluoroalkylisophthalates
8c—d: rypical procedure

A solution of 6a—d (1.5 mmol) in anhydrous xylenes
(10 ml) was heated in a sealed tube at 150 °C for 3 h. After
cooling, the solution was passed through a silica gel column
and eluted with EtOAc/petroleum ether (1:9) to separate the
product 8a—d from triphenylphosphine oxide. The product
8a—d was further purified by recrystallization from light
petroleum.
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